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Abstract. Even with the introduction of supercharacter theories, the representation
theory of many unipotent groups remains mysterious. This paper constructs a family
of supercharacter theories for normal pattern groups in a way that exhibit many of the
combinatorial properties of the set partition combinatorics of the full uni-triangular
groups, including combinatorial indexing sets, dimensions, and computable character
formulas. Associated with these supercharacter theories is also a family of polytopes
whose integer lattice points give the theories geometric underpinnings.
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1 Introduction

Supercharacter theory has infused the representation theory of unipotent groups with
the combinatorics of set partitions. Specifically, set partitions index the supercharac-
ters of the maximal unipotent upper-triangular subgroup UT of the finite general linear
group GL [2, 13], and similar theories exist for the maximal unipotent subgroups of
other finite reductive groups [3, 4]. However, while there are supercharacter theories for
other unipotent groups, they do not generally exhibit this computable and combinato-
rial nature. This paper seeks to define a natural family of supercharacter theories for the
normal pattern subgroups of UT. As an added bonus, we not only obtain a combinato-
rial description for these theories, but also gain geometric underpinnings coming from
a family of lattice polytopes.

Diaconis–Isaacs defined a supercharacter theory of a finite group G as a direct ana-
logue of its character theory, where they replacing conjugacy classes with superclasses
and irreducible characters with supercharacters [9]. Their approach is based on An-
dré’s adaption of the Kirillov orbit method to study UT, and the underlying axioms
are calibrated to preserve as many properties of irreducible characters and conjugacy
classes as possible. For example, the supercharacters are an orthogonal (but not gen-
erally orthonormal) basis for the space of functions that are constant on superclasses.
This definition has given us new approaches to groups whose representation theories
are known to be difficult (eg. unipotent groups). Not only can these new theories be
combinatorially striking [1], but they can also be used in place of the usual character
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theory [5] in applications, they give a starting point in studying difficult theories [10], or
give character theoretic foundations for number theoretic identities (eg. [6, 11]).

The supercharacter theories of this paper are fundamentally based on André’s orig-
inal construction for UT [2] and Diaconis–Isaacs’ later generalization to algebra groups
[9]. These constructions use two-sided orbits in the dual space ut˚ of the corresponding
Lie algebra ut of UT to construct the supercharacters. In the algebra group case the group
UT acts on ut˚ by left and right multiplication (technically pre-composition by left and
right multiplication on ut). In this paper we modify this construction by instead acting
by parabolic subgroups of GL. The resulting theory is coarser but far more combinatorial
in nature. In particular, we obtain statistics such as dimension, nestings and crossings
that generalize the corresponding set partition statistics [8], and in Theorem 4.4 we give
a character formulas with a “factorization" analogous to the well-known UT-cases.

For each supercharacter theory there is an associated polytope whose integer lattice
points index the supercharacters of the theory. Thus, the supercharacter theories could
in principle give a categorified version of the Ehrhart polynomials of these polytopes.
These polytopes include all transportation polytopes [12], and may be viewed as a fam-
ily of subfaces of transportation polytopes. This point of view not only gives a geometric
approach to these supercharacter theories, but it also re-interprets set partitions as ver-
tices of a polytope. Since I am unaware of other contexts where these polytopes may
have been studied, I will refer to them as unipotent polytopes. At present we do not
understand the significance of this geometry in the representation theory of unipotent
groups, and this seems to be a promising direction for future work.

2 Preliminaries

This section reviews the relevant unipotent groups, a combinatorial interpretation of
normality, and some of the standard supercharacter theories for these groups.

2.1 Normal pattern groups

Let N be a fixed total order of a finite set with N elements and fix a finite field Fq with q
elements (eg. the total order 1 ă 2 ă ¨ ¨ ¨ ă N). Let GLN denote the finite general linear
group on matrices with rows and columns indexed by our finite set in the order dictated
by N . If charpFqq “ p, then a Sylow p-subgroup of GLN is the subgroup of unipotent
upper-triangular matrices

UTN “ tg P GLN | pg´ IdNqij ‰ 0 implies i ăN ju, and utN “ UTN ´ IdN

is a corresponding nilpotent Fq-algebra. If n Ď utN is any subalgebra, then we obtain
a subgroup IdN ` n Ď UTN called and algebra subgroup. If P is a subposet of N on the
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same underlying set, then we call the algebra subgroup

UTP “ IdN ` utP Ď UTN , where utP “ tx P utN | xij ‰ 0 implies i ăP ju,

a pattern subgroup of UTN . Note that transitivity in the poset P exactly implies that UTP
is closed under multiplication.

In general, a subposet P of a poset Q does not give a normal subgroup UTP of UTQ.
However, there is a straight-forward condition on the poset that characterizes this group
theoretic condition: a subposet P Ď Q is normal if j ăP k implies i ăP k and j ăP l for
all i ăQ j and k ăQ l. In this case, we write P ŸQ.

There are a number of combinatorial interpretations of normal posets of the total
order N . For N P Zě0, let DN denote the Young diagram pN ´ 1, N ´ 2, . . . , 1q, where
we right justify the rows. For example,

D5 “ .

Proposition 2.1. There are bijections
"

Dyck paths from
p0, 0q to p2N,´2Nq

*

ÐÑ

"

normal sub-
posets of N

*

ÐÑ

"

sub-Young
diagrams of DN

*

dP Ð [ P ÞÑ FP .

where p2i´ 1, 2j´ 1q is NorthEast of dP if and only if i ăP j if and only if pi, jq P FP .
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where the shaded region accentuates the relevant points NorthEast of the Dyck path.

2.2 Supercharacter theories of unipotent groups

Supercharacter theories for finite groups were first defined in [9], generalizing work by
André studying representations of UTN (a series of papers starting with [2]). There are
numerous equivalent formulations of a supercharacter theory, but the following seems
most suitable for the purposes of this paper.

A supercharacter theory pK,X q of a finite group G is a pair, where K is a partition of
G and X is a set of characters, such that



4 Nathaniel Thiem

(SC0) The number of blocks of K is the same as the number of elements in X .

(SC1) Each block K P K is a union of conjugacy classes.

(SC2) The set
X Ď tθ : G Ñ C | θpgq “ θphq, g, h P K, K P Ku.

(SC3) Each irreducible character of G is the constituent of exactly one element in X .

We refer to the blocks of K as superclasses and the elements of X as supercharacters.
While we have many ways of constructing supercharacter theories, general construc-

tions are not well-understood. That is, given a finite groups, it is a hard problem to
determine its supercharacter theories. Some groups have remarkably few supercharac-
ter theories, such as the symplectic group Sp6pF2q with exactly 2 [7], and some groups
have surprisingly many, such as C3ˆC6 with 297 distinct supercharacter theories. How-
ever, for this paper we follow the basic strategy laid out by [9] for algebra groups.

Let IdN ` n Ď UTN be an algebra subgroup. Then IdN ` n acts on both n and its
vector space dual n˚ by left and right multiplication, where

pa ¨ y ¨ bqpxq “ ypa´1xb´1
q, for a, b P IdN ` n, x P n, y P n˚.

Fix a nontrivial homomorphism ϑ : F`q Ñ GL1pCq – Cˆ. In this situation [9] define a
supercharacter theory given by

AG-superclasses. The set partition tIdN ` pIdN ` nqxpIdN ` nq | x P nu of IdN ` n.

AG-supercharacters. The set of characters
!

χ
y
AG “

ÿ

zPpIdN`nqypIdN`nq

ϑ ˝ z | y P n˚
)

.

Remark. In the case where n “ utN , this supercharacter theory gives a nice combinato-
rial theory developed algebraically by André [2] and more combinatorially by Yan [13].
However, in general even this supercharacter theory may be wild for algebra subgroups.
In fact, we do not even understand it for pattern subgroups.

3 Block normal pattern subgroups

In this section, we build a family of pattern subgroups of UTN ; they will all be normal,
and each will have a family of supercharacter theories, defined in Section 4. The choice of
a subgroup with an associated supercharacter theory will determine a polytope, giving
the theory a geometric foundation.
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3.1 Parabolic posets and UTβ

We begin by defining a family of unipotent groups that appear naturally in the theory
of reductive groups, the unipotent radicals of parabolic subgroups. It turns out that for
GLN , these unipotent groups are pattern groups and their associated posets are easy
to characterize. In Section 4, each unipotent radical UTβ will determine a family of
supercharacter theories.

A subposet Q is parabolic in N if there exists a set composition pQ1,Q2, . . . ,Q`q of
the underlying set such that a ăQ b if and only if a P Qi and b P Qj with i ă j. These
subposets are necessarily normal, where the corresponding Dyck path always returns
down to the diagonal before moving right again. We will write QŸpb N .

Since given a total order N the sizes of the blocks of the set composition completely
determines Q, we deduce the following proposition.

Proposition 3.1. There is a bijection

bdry :
"

Parabolic sub-
posets of N

*

ÝÑ

"

integer com-
positions of N

*

Q ÞÑ p|Q1|, . . . , |Q`|q.

For an integer composition β ( N and an underlying total order N , define

UTβ “ UTbdry´1
pβq

(note that bdry´1
pβq makes no sense without N ).

Every parabolic subposet Q in N with β “ bdrypQq has a corresponding Levi sub-
group

Lβ “

»

—

—

—

—

–

GLβ1 0 ¨ ¨ ¨ 0

0 GLβ2

. . . ...
... . . . . . . 0
0 ¨ ¨ ¨ 0 GLβ`

fi

ffi

ffi

ffi

ffi

fl

,

such that UTβ is the unipotent radical of the parabolic subgroup

Pβ “ Lβ ˙UTβ “ NGLN pqqpUTβq.

Remark. The Lie theoretic language of parabolics, Levis and unipotent radicals is merely
given for context. The reader is welcome to ignore the terminology and focus on the
definitions.
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3.2 Unipotent polytopes and UTpβ,Pq

Fix an integer composition β “ pβ1, . . . , β`q ( N and let P be a normal subposet of
1 ă 2 ă ¨ ¨ ¨ ă ` with corresponding Ferrers shape F. The unipotent polytope pβ,Pq is the
convex polytope in the positive quadrant R

|F|
ě0 determined by the inequalities

!

ÿ

iăP j

xij ď β j,
ÿ

jăP k

xjk ď β j

ˇ

ˇ

ˇ
1 ď j ď `

)

.

Remark. If F is the Ferrers shape corresponding to P , then one may view the unipotent
polytope as possible fillings of the boxes of F by non-negative real numbers such that
the row and column sums are bounded by β.

Examples.

(E1) If β “ p2, 3, 1, 1, 5q, and

P “

‚1 ‚2 ‚3 ‚4

‚5
ÐÑ

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨

¨ ¨

¨

‚ ‚ ‚ ‚

‚ ‚ ‚

‚ ‚

‚

1

2

3

4

5

ÐÑ ,

then the equations x15 ď 2, x25 ď 3, x35 ď 1, x15 ` x25 ` x35 ď 5 give the polytope

‚

‚

‚
‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

x15

x25

x35

.

(E2) In general, the unipotent polytopes pβ,Pq where the corresponding Ferrers shape
FP is a square are transportation polytopes (with a few additional faces). They are
a subfamily corresponding to abelian unipotent groups. In this case, the bounds
on the row sums and and the bounds on the column sums are independent.

If bdry´1
pβq has corresponding set composition pQ1, . . . ,Q`q, then a unipotent poly-

topes pβ,Pq determines a subgroup

UTpβ,Pq “ UTfatβpPq ŸUTβ, (3.1)
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where fatβpPq is the subposet of bdry´1
pβq given by

a ăfatβpPq b if and only if a P Qi, b P Qj with i ăP j.

Remark. For a fixed total order N with N elements, the function
"

unipotent polytopes
pβ,Pq with |β| “ N

*

ÝÑ

"

normal sub-
groups of UTN

*

pβ,Pq ÞÑ UTpβ,Pq

is not injective, since, for example,

UT
pp14q,

1 2

3 4
q
“

»

—

—

–

1 0 ˚ ˚

0 1 ˚ ˚

0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

“ UT
pp2,2q,

1

2
q
.

On the other hand, for a fixed β ( N, the function is injective (as P varies).

4 Parabolic supercharacter theories

The data in a unipotent polytope pβ,Pq also gives a natural supercharacter theory to a
corresponding unipotent group UTpβ,Pq. This section defines this theory, shows that the
supercharacters/superclasses are indexed by the integer lattice points contained in the
polytope pβ,Pq, and then gives character formulas.

4.1 Supercharacter theories and their index sets

Let pβ,Pq be a unipotent polytope with β ( N. Then, as before, we have

utpβ,Pq “ UTpβ,Pq ´ IdN and ut˚pβ,Pq “ HomFqputpβ,Pq, Fqq.

The group Pβ acts on both utpβ,Pq and ut˚
pβ,Pq by left and right multiplication, where

pa ¨ y ¨ bqpxq “ ypa´1xb´1
q, for x P utpβ,Pq, y P ut˚pβ,Pq, a, b P Pβ.

These actions give a natural supercharacter theory for UTpβ,Pq.

Pβ-superclasses of UTpβ,Pq. The set partition tPβxPβ ` IdN | x P utpβ,Pqu of UTpβ,Pq.

Pβ-supercharacters of UTpβ,Pq. The characters

tχ
y
β | PβyPβ P Pβzut

˚
pβ,Pq{Pβu, where χ

y
β “

ÿ

zPPβyPβ

ϑ ˝ z. (4.1)
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Proposition 4.1. If pβ,Pq is a unipotent polytope, then the Pβ-superclasses and the Pβ-super-
characters form a supercharacter theory of UTpβ,Pq.

Remark. For y P ut˚
pβ,Pq, define the UTpβ,Pq-module My by a C-basis

t z | z P PβyPβu

with an action

u ¨ z “ ϑ ˝ zpu´1
´ Id|β|q uz for u P UTpβ,Pq, z P PβyPβ.

The trace of My is the supercharacter χ
y
β.

For a unipotent polytope pβ,Pq with FP as in Proposition 2.1, let

T β
P “

!λ : FP Ñ Zě0
pi, jq ÞÑ λij

ˇ

ˇ

ˇ

ÿ

k
pj,kqPFP

λjk,
ÿ

i
pi,jqPFP

λij ď β j, 1 ď j ď `
)

be the set of Zě0-lattice points contained in or on pβ,Pq. The following theorem es-
tablishes the connection between Pβ-supercharacter theories and Zě0-lattice points in
unipotent polytopes.

Theorem 4.2. For pβ,Pq a unipotent polytope,
"

Pβ-superclasses
of UTpβ,Pq

*

ÐÑ T β
P ÐÑ

"

Pβ-supercharacters
of UTpβ,Pq

*

.

Examples.

(E1) The set

T p4,1,2q

1 2
3 “

$

&

%

4
1

2

0
0 ,

4
1

2

1
0 ,

4
1

2

0
1 ,

4
1

2

1
1 ,

4
1

2

2
0 ,

,

.

-

where the entries shaded in gray give the bounds for each row and column.

(E2) If β “ p1m, nq with m ď n and

P “

1 2 m

m`1

¨ ¨ ¨

then T β
P is the set of vertices of the m-dimensional hypercube.
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(E3) If N “ 2m, and

P “

1 2 m

m`1 m`2 N

¨ ¨ ¨

¨ ¨ ¨

then T p1
Nq

P is the usual basis for the rook monoid.

(E4) If N is a total order of a set A, then the set T p1
Nq

N is in bijection with the set of set
partitions of A.

4.2 Supercharacter formulas

There are a number of statistics that arise naturally in the Pβ-supercharacter theories.
They naturally generalize their set partition analogues in the Pp1Nq-supercharacter theory
of UTN (see [8] for a more general algebraic framework for these statistics).

For λ P T β
P with Q the usual linear order on t1, 2, . . . , `pβqu, there are a number of

ways to measure the “size" of a λ. For example,

|λ| “
ÿ

iăP j

λij

measures the lattice distance to the origin of the lattice point in the unipotent polytope.
However, geometric interpretations of the other statistics are unknown (at least to me).
Having more to do with the dimension of the corresponding modules,

dimLpλq “
ÿ

iăP jăQk

λikβ j and dimRpλq “
ÿ

iăQ jăP k

λikβ j

give the left and right dimensions of λ (respectively). Note that if P “ Q, then dimRpλq “

dimLpλq. To account for over-counting, we also require the crossing number

crspλq “
ÿ

iăQ jăP kăQl

λikλjl

of λ. Lastly, if µ P T β
P , the nestings of µ in λ are

nstλ
µ “

ÿ

iăP jăP kăP l

λilµjk.

Example. if β “ p3, 6, 3, 4, 5, 1q,

λ “ 3
6

3
4

5
1

2 0 1 0
0 0 1 1

0 1 0

and µ “ 3
6

3
4

5
1

0 1 0 1
1 0 2 0

1 2 0
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then

|λ| “ 6 ¨ 0` 4 ¨ 1` 1 ¨ 2

dimLpλq “

1 ¨ p3` 4q ` 1 ¨ p3` 4q ` 1 ¨ 4 ` 1 ¨ p3` 4` 5q

3
4

2 0 1 0
0 0 1 1

0 1 0 3
4

2 0 1 0
0 0 1 1

0 1 0
4

2 0 1 0
0 0 1 1

0 1 0 3
4

5

2 0 1 0
0 0 1 1

0 1 0

dimRpλq “ 2 ¨ 6` 1 ¨ p6` 3q ` 1 ¨ 3` 1 ¨ 3

nstλ
µ “ 1 ¨ 1` 3 ¨ 1 ¨ 1` 2 ¨ 1

crspλq “

2 ¨ 1 ` 2 ¨ 1 ` 1 ¨ 1
2 0 1 0
0 0 1 1

0 1 0

2 0 1 0
0 0 1 1

0 1 0

2 0 1 0
0 0 1 1

0 1 0

The most basic case for us is when the polytope is a line segment, so consider the
case where

β “ pm, nq, Q “ bdry´1
pβq “

‚
1

‚
2

‚
m

‚
m`1

‚
m`2

‚
m`n

¨ ¨ ¨

¨ ¨ ¨
for N “

‚ 1

‚ 2

‚m`n

... .

Then

UT
pβ, ‚
‚
q
“

"„

Idm A
0 Idn


ˇ

ˇ

ˇ

ˇ

A P MmˆnpFqq

*

– pF`q q
mn.

In this case, the superclass of
„

Idm A
0 Idn



is determined by rankpAq P T pm,nq

‚
‚ “ t0, 1, . . . , mintm, nuu.

For n, k P Zě0, let
„

n
k



q
“

rns!
rks!rn´ ks!

, where rns! “ rnsrn´ 1s ¨ ¨ ¨ r2sr1s and rns “
qn ´ 1
q´ 1

.

Theorem 4.3. If 0 ď j, l ď mintm, nu and upjq “ Idm`n ` epjq P UTpβ,Qq, then

χ
plq
pm,nqpupjqq “

ÿ

a,bPZě0
a`b“l

p´1qaqbj`pa
2q

„

j
a



q
χ
pbq
pm´j,n´jqpup0qq,

where

χ
plq
pm,nqpup0qq “ |GLlpFqq|

„

m
l



q

„

n
l



q
“ #

"

mˆ n matrices
of rank l

*

.
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Remark. We use the convention that |GL0pFqq| “ 1.

Let pβ,Pq be an arbitrary unipotent polytope. For λ, µ P T β
P , let

locλ
µ : tpj, lq | j ăP lu ÝÑ Zě0 ˆZě0

pj, lq ÞÑ

´

β j ´
ÿ

jăP kăP l

µjk ´
ÿ

lăPm

λjm, βl ´
ÿ

jăP kăP l

µkl ´
ÿ

iăP j

λil

¯

.

For example, if β “ p3, 6, 3, 4, 5, 1q,

λ “ 2 0 1 0
0 0 1 1

0 1 0

and µ “ 0 1 0 1
1 0 2 0

1 2 0

then

locλ
µp2, 5q “

ˆ

β2 ´
0 1 0 1
1 0 2 0

1 2 0

´
2 0 1 0
0 0 1 1

0 1 0

, β5 ´
0 1 0 1
1 0 2 0

1 2 0

´
2 0 1 0
0 0 1 1

0 1 0

˙

“ p6´ p1` 0q ´ 1, 5´ 2´ 1q
“ p4, 2q.

Theorem 4.4. For λ, µ P T β
P and uµ “ 1` eµ,

χλ
βpuµq “

qdimLpλq`dimRpλq

qnstλ
µ`crspλq

ź

jăP l

χ
pλjlq

locλ
µpj,lq

pupµjlq
q.
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